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Abstract—Distributed architecture for prognostics is an 
essential step in prognostic research in order to enable 
feasible real-time system health management. 
Communication overhead is an important design problem 
for such systems. In this paper we focus on communication 
issues faced in the distributed implementation of an 
important class of algorithms for prognostics – particle 
filters. In spite of being computation and memory intensive, 
particle filters  lend well to distributed implementation 
except for one significant step – resampling. We propose 
new resampling scheme called parameterized resampling 
that attempts to reduce communication between 
collaborating nodes in a distributed wireless sensor network. 
Analysis and comparison with relevant resampling schemes 
are also presented. A battery health management system is 
used as a target application. 1 2 
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1. INTRODUCTION 

As health management issues become an increasingly 
dominant concern in the aerospace domain, it becomes 
imperative to explore efficient architectures for system 
implementation. An important constituent of a health 
management system is prognostics or determining the 
remaining useful life. Such systems consist of multiple 
sensors that monitor various subsystems; the data collected 
from these sensors are processed by suitable algorithms to 
determine the health of the system. Thus, they are complex 
and deploy sophisticated algorithms as well as sensor 
instrumentation. 

Most of the system development assumes a centralized 
health management architecture, i.e., a central computing 
machine collects all the sensor data, processes them, and 
then runs various diagnostic and prognostic algorithms. 

                                                           
1U.S. Government work not protected by U.S. copyright. 
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Such a system architecture has to deal with several 
challenges: (a) large amounts of sensor data being collected 
for more refined analysis (e.g., high frequency vibration 
data for structures health management or data with high 
sampling rate for avionics health management); (b) 
increasingly more complex algorithms – intensive in terms 
of memory as well as computation  – are being deployed to 
process this data, exceeding the capabilities of single-
processor systems; and (c) vulnerability to complete loss of 
functionality in case of a crash of the central 
processor/monitor. In the last case, considerable amount of 
time and effort is required to recover and restore back the 
health management system and in many instances such a 
recovery may not be possible at all. A centralized 
architecture is not sufficient for the increasingly multi-
operational and complex systems of today. 

Distributed health management is the next step in the 
evolution of prognostic methodologies. A distributed 
architecture comprises multiple smart sensor devices that 
monitor different parts of a system and collaborate when 
computationally intensive prognostic algorithms or large 
amounts of data are involved that cannot be handled 
efficiently by a single processor/node. Recent advances in 
smart sensor technology combining the power of embedded 
computing devices with sensors and wireless transmission 
technology make the practical implementation of such 
systems feasible. 

One of the most important design considerations in such 
systems is the communication overhead. Inefficient 
communication architecture can reduce computational 
performance gains obtained from task distribution. 
Additionally, design issues faced in a wired distributed 
system are significantly different from that faced in wireless 
systems. Thus, prognostics algorithms need to be specially 
designed for such systems to increase their communication 
efficiency.  

Particle filters provide an important class of algorithms 
employed in system prognostics. They are computation and 
memory intensive algorithms but lend very well to 
distributed implementations except for one significant step – 
resampling. Efforts for efficient distributed resampling 
schemes have been made. However, the suitability of such 
schemes is heavily dependent on the application as well as 
target implementation platform. In this paper, we explore 
different resampling schemes for a particle filter based 
battery health management system with special focus on 
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reduction of communication between collaborating nodes in 
a wireless sensor network. In addition, we propose a new 
resampling scheme for particle filter systems targeted 
towards reducing the communication overhead. The specific 
target platform in our case is a network of Sun 
Microsystems SPOT (Small Programmable Object 
Technology) devices. However, the techniques developed in 
this paper are generic enough for use in other particle filter 
based systems. 

2. BACKGROUND  

The field of prognostics is still maturing and hence 
significant work in distributed prognostics does not exist. A 
few efforts have been made recently. The authors briefly 
outline a distributed prognostics system architecture in [1] 
where tasks are distributed at the prognostics algorithm 
level, i.e., identifying the different system modules and 
where they fit into a given system using prognostics. In [2] a 
distributed network of smart sensor elements integrated 
using a knowledge-driven environment to perform self-
diagnosis of health and participate in a hierarchy of health 
determination at sensor, process, and system levels. This 
network will be used as an element of the prototype 
intelligent rocket test facility being implemented at NASA 
Stennis Space Center. In [3] a hardware multi-cellular 
sensing and communication network (a smart “skin”) is 
presented and discussed for health management of space 
vehicles. The main aim of such a smart “skin” aim is to 
detect and react to impacts caused by projectiles that, for a 
vehicle in space, might be micro-meteoroids or space debris. 
 
Some of the techniques used in prognostics – such as 
particle filters – have been investigated in the context of 
distributed implementations. For example, in [4] the authors 
present three different distributed methods for implementing 
particle filter system. However, the algorithms presented do 
not distribute the algorithm fully. In [5] the authors present a 
parallel particle filter implementation on a shared-memory 
multiprocessor cluster. Sensor networks have gained 
popularity of late and often employ particle filters for 
tracking objects. Distributed particle filters for such 
applications have also been explored ([6], [7], [8], [9], [10]). 
However, none of the work above addresses the problem of 
communication overhead involved in distributed particle 
filters and improving the communication efficiency. 
 
Communication issues are widely recognized and analyzed 
in the context of generic distributed networks. It is most 
often the highest contributor to resource management costs, 
typically higher by orders of magnitude as compared to 
other factors.  Various approaches have been explored to 
mitigate the effects of communication issues. For example, 
an approximate dynamic programming approach that 
integrates the value of information and the cost of 
transmitting data over a rolling time horizon is presented in 
[11] in the context of object tracking with a distributed 

sensor network. However, the above technique is specific to 
a given application domain and may not be easily extended 
to other domains. Network topology can play an important 
role in improving communication overheads, and in [12] the 
authors present few recent developments in networking 
techniques for multiple sensor systems. In [13], the problem 
of minimizing communication in general distributed 
systems is considered in a discrete-event formalism where 
the system is modeled as a finite-state automaton. This work 
provides an interesting approach; however it focuses more 
on an analysis framework.  
 
As may be observed from the work discussed above, there is 
a distinct lack of work on design of distributed algorithms in 
the context of prognostics that focus on reducing the 
communication overhead. The work presented in this paper 
attempts to address this problem with focus on a special 
class of algorithms – particle filters. However, the solutions 
presented are generic enough for extension to other 
application domains that are particle-filter based. 

3. DISTRIBUTED PROGNOSTICS  

Overview 

In a distributed prognostics system multiple smart sensor 
devices are employed that monitor various subsystems or 
modules. The devices perform diagnostics operations and 
trigger the prognostics mode based on user defined 
thresholds and rules. An example of such a distributed 
prognostics system is shown in Figure 1. As shown in this 
figure, the system architecture in general comprises multiple 
computing elements (CEs) each of which consists of a 
sensor or a set of sensors and a communication device i.e., a 
wireless transreceiver or wired communication capabilities 
besides an embedded processing element. Though, in this 
paper we mainly focus on a wireless implementation 

 

Figure 1 – Overview of distributed prognostics system 

architecture. Note that all the CEs may not have wireless 

connectivity. 
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platform, in a real-life scenario the connection between the 
sensor devices may be wired as well. A wireless connection 
enables more flexibility in the system design with regards to 
placement of sensors. However, this flexibility comes at the 
cost of significantly higher communication overhead that 
involves concerns such as synchronization and packet losses 
besides performance issues.  
 
Under most operating conditions the CEs would use both 
the sensor and embedded processing capabilities. However, 
in many cases their sensor capabilities may not be utilized, 
i.e., they could act as monitors for the rest of the system – 
schedule tasks, detect failures and initiate recovery, provide 
access to resources such as an external database etc. – or act 
as “helpers” to offload the computation requirements from 
other CEs in order to maintain real-time constraints of the 
application. 
 
There are two operating modes for a CE: diagnostics and 
prognostics [14]. A CE runs in the default mode of 
diagnostics until a flag is raised by some CE. Depending on 
the current state (i.e., availability of resources) it then 
switches to prognostics mode. Thus, in the prognostics 
mode it is not necessary that all the CEs are utilized; some 
of them may be busy monitoring critical components or may 
not have enough computing power to simultaneously 
execute default operations. Note that the diagnostics 
operations are not halted in the prognostics mode. To ensure 
that a CE can support such multi-tasking efficiently the 
prognostics algorithms need to be distributed efficiently.  
 
In Figure 1, the basestation is not statically determined. 
Initially, a default basestation is allocated whose main job is 
to monitor the CEs and coordinate information exchange. 
This information exchange not only involves the CEs 
themselves but also includes entities such as the user, a 
database server (for accessing history knowledge, or store 
collected sensor data for later analysis) and other clusters of 
CEs in a hierarchical system. When the prognostics mode is 
triggered, either the base station or the CE that triggered the 
mode makes an estimate of available computing resources. 
The new basestation is chosen which then partitions, 
schedules and delegates tasks accordingly. 
 
Implementation Platform 

The implementation platform consists of a network of smart 
sensor devices from Sun Microsystems called SPOT (Small 
Programmable Object Technology) devices. The SPOT 
device is a small, wireless, battery powered experimental 
platform which is built by stacking a Sun SPOT processor 
board with a sensor board and battery. The sensor board 
includes a range of built-in sensors as well as the ability to 
easily interface with external devices. In terms of processing 
power, each Sun SPOT has a 180MHz 32-bit ARM920T 
core processor with 512K RAM and 4M Flash. As shown in 
[14] this provides sufficient multi-tasking capabilities for 
the systems under consideration in this work.  
 

The SPOT devices communicate using radio channels. The 
processor board has a 2.4GHz radio with an integrated 
antenna on the board. The radio is IEEE 802.15.4 compliant. 
The communication capability of this system was severely 
overloaded for our distributed prognostics implementation 
[14] due to limitations imposed by the restrictions on the 
message length by the communication channel. In the 
context of a particle-filter based prognostics system, this 
posed a significant design challenge, as particle filters are 
data intensive algorithms. Particle filters main system 
information is in terms of states and each state is 
represented using large number of as samples (further 
details are provided in section 4). Due to the above-
mentioned communication limitations, the full state 
information for a single particle filter iteration could not be 
packed into one message. Thus, the message had to be 
broken into multiple parts and sent iteratively as separate 
messages. This increased the amount of time spent in 
communication considerably, as the time to set up and send 
a message as well as receiving the message is significantly 
high. Furthermore, communication was acknowledgement-
based in order to handle lost or corrupt messages, thereby 
further adding to the communication overhead.  
 
It may be emphasized that such problems with high volume 
of communication are commonly encountered in many 
distributed and wireless systems. Therefore, there is a strong 
need to design algorithms which reduce both the number of 
communication messages as well as the message lengths. 
Battery power consumption gets significantly affected by 
wireless communication usage as well. The maximum 
capacity of the built-in battery (3.7V rechargeable, Lithium-
ion battery) for the SPOT devices is 720 mAhr. Since 
battery power management is a key issue in wireless 
systems, this provides further motivation for improving 
communication efficiency.  

4. DISTRIBUTED PARTICLE FILTERS 

Particle filters (PFs) provide a powerful technique for 
prognostics. They are based on Bayesian learning networks 
and essentially implement a recursive Bayesian filter using 
Monte Carlo (MC) simulations; hence they are also known 
as sequential MC methods. In the prognostics domain, PFs 
are mainly used to track progression of system state in order 
to make estimations of remaining useful life (RUL).  
 
Bayesian techniques provide a general rigorous framework 
for such dynamic state estimation problems where the core 
idea is to construct a probability density function (pdf) of 
the state based on all available information. For the PF 
approach ([15], [16]) this is done by approximating the pdf 
with a set of particles (points) representing sampled values 
from the unknown state space, and a set of associated 
weights denoting discrete probability masses. The particles 
are generated and recursively updated from a nonlinear 
process model that describes the evolution in time of the 
system under analysis, a measurement model, a set of 
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available measurements and an a priori estimate of the state 
pdf.  
 
Particle filter methods assume that the state equations can be 
modeled as a first order Markov process with the outputs 
being conditionally independent. This can be represented as 
follows: 

       xk = f(xk-1) + ωk 

       yk = h(xk) + υk         (1) 

where, k is the time index, x denotes the state, y is the 
output or measurements, and both ω and υ are samples from 
noise distributions. The algorithm is initiated by a best guess 
estimate of the state space represented as a set of N 
weighted particles {(wk

(i),xk
(i)): i=1,…,N}. The importance 

weights wk
(i) are approximations to the relative posterior 

probabilities of the particles. 

In terms of computation, a particle filter based system 
consists of the following three computational steps: 
1. Sampling: Generation of samples (particles) of the 

unknown state based on the given sampling function to 
provide an estimate of the current state of the system 
and also propagate the particles from the previous time 
step to the current time using Eq. (1). 

2. Weight Calculation: Update importance weights for 
each particle based on external observations: 
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3. Resampling: Redrawing particles from the same 
probability density based on some function 
(resampling function) of the particle weights such 
that the weights of the new particles are 
approximately equal. 

Though particle filters are expensive with respect to 
computation as well as memory requirements, they exhibit 
considerable amount of data parallelism to enable 
distributed processing. All the steps enlisted above except 
resampling can be completely distributed over 
independently executing CEs. Since there are no data 
dependencies during sampling and weight updates, these 
segments of particle filtering form a data parallel single 
instruction multiple data (SIMD) algorithm and can be 
partitioned into M CEs. Thus, if there are N particles, (1 < 
M < N) each CE performs the same operations in time on Nn 
= N/M different particles where both M and Nn are integers. 
An overview of this distributed particle filter architecture is 
given in Figure 2. The central server performs resampling 
— partial or full depending on the resampling scheme — 
and particle routing as well as overall control. 

Resampling is a critical step in particle filter 
implementations. Without it the variance of the particle 
weights quickly increases, i.e., very few normalized weights 

remain substantial. This causes degradation in inference 
because the effective number of particles used for the state 
representation decreases. Resampling removes particle 
trajectories with small weights and replicates trajectories 
with large weights. Unfortunately, most resampling 
algorithms are essentially sequential. Since resampling 
involves updating of weights, most resampling algorithms 
require the completion of sampling and weight updating 
prohibiting concurrency between steps.  Though, various 
efforts to derive distributed versions of resampling 
algorithms have been made, it has not been possible till now 

to formulate a fully distributed version. Besides, the 
following problems diminish the advantages of existing 
algorithms for partial distribution of the resampling task: (a) 
communication of new particles and weights amongst CEs 
after resampling is extensive, and (b) connections among the 
CEs are not known before the run-time and may change 
after each sampling period. Furthermore, the resampling 
technique used is often dictated by the application and 
system requirements and hence existing distributed versions 
cannot be used in all designs. 

In the following subsections, a discussion of existing 
resampling techniques suitable for our domain is discussed 
along with the performance trade-offs involved in their use. 
Finally, a discussion our proposed new resampling 
technique is presented and discussed. 

5. DISTRIBUTED RESAMPLING 

In order to prevent degradation of inference in the particle 
filter, resampling ensures that the effective number of 
particles does not decrease over time. Here, effective 
number of particles represents the total number of 
statistically significant particles. It is not desirable to waste 
computing resources on propagating and updating particles 
with negligible weights. The effective number of particles in 
any given population is calculated as: 
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Figure 2 – System architecture for particle filter based 

prognostics system. 
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Conventional Resampling Techniques 

A communication-efficient conventional resampling scheme 
is threshold-based resampling. In such a scheme, when the 
effective number of particles is less than some threshold (i.e. 
Neff < Nthr), resampling is performed. The new population of 
particles {xk

(i)*: i=1,…,N} is generated by sampling with 
replacement N times from the approximate discrete 
representation of the posterior state distribution given by: 
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such that p(xk
(i)*= xk

(i)) = wk
(i). The resampled population is 

independently and identically distributed with uniform 
weight of 1/N.  

 

Figure 3 – Systematic resampling. 

Figure 3 shows a schematic of the resampling process 
(CSW stands for the cumulative sum of the weights). The 
random variable ui, j=1,…,N is uniformly distributed on [0, 
1]. 

In terms of computing steps, first the cumulative sum of 
weights (CSW) of sampled particles (wk

j for jth particle in 
the kth filter iteration) is computed. Then, as shown on the 
right of the figure, uj (a uniform random number) is 
systematically updated and compared with the CSW of the 
particles. The particle with CSW greater than uj is 
replicated. If number of particles in N, uj is sampled N times 
to complete the resampling. Note that these resampling steps 
are carried out in the central server (Figure 2) after it has 
collected the updated particle values and their weights.   

The value of Nthr chosen determines the frequency of the 
resampling step. This choice governs the tradeoff between 
prediction uncertainty (width of the state pdf) and 
computational and communication burden. If Nthr is chosen 
to be N, then resampling is performed every filter iteration. 
This resampling scheme is also known as systematic 
resampling. For the purposes of this paper we call this the 
baseline resampling scheme. We compare the results 
obtained by this method with those derived from taking Nthr 
= 0.4×N.  

Parametric Resampling 

In this section, we present a new resampling scheme that 
aims to reduce both the communication message length and 
the number of messages. As, shown in the results, this leads 
to a significant decrease in communication load. In the 
threshold-based resampling scheme, minimizing 
communication requirements corresponds to lowering the 
value of Nthr would achieve that. But this can 
correspondingly increase the degeneracy of the particle 
weights between resampling steps. This might lead to 
unacceptable uncertainty bounds for the state estimates.  

Since the communication overhead of resampling stems 
from the need to aggregate all particle values and weights, 
the load may be somewhat reduced by performing 
resampling locally at each CE for most iterations and 
resampling globally (across all CEs) every few iterations. 
The main issue for this scheme is to maintain the statistical 
invariance property of resampling while doing so locally 
(i.e. ensuring that the statistical properties of the particle 
population after local resampling is unchanged). This is 
achieved in two ways: 
1. Each CE operates on a statistically significant number of 

particles, i.e. Nn >> 1, where Nn denotes the number of 
particles for CEn, (ΣNn = N). Without loss of generality 
we assume that for all CEs Nn = N/M, where M is the 
number of CEs. 

2. Any given CEn has a particle population {(wk
(in),xk

(in)): 
in=1,…,Nn} representing the full state pdf. To ensure 
this, we perform a parametric approximation of the state 
pdf at the global resampling step. A mixture of 
Gaussians is fitted to the particle population of each CE 
using a least squares method. Thus for CEn we would 
obtain the following vectors, 
µk
n containing the means µj,k

n of the j Gaussian kernels 
fitted to the population (wk

(in),xk
(in)), 

σk
n containing the standard deviations σj, kn of the 
kernels, and  

αk
n containing the relative weights αj,k

n of the kernels 
such that Σj(αj,k

n) = 1. 
3. The parametric estimates of all the CEs are 

communicated globally, following which the weighted 
sum of all the Gaussian kernels is sampled Nn times to 
generate the resampled population. 

We call this technique parametric resampling. Thus, this 
method attempts to decrease the communication message 
length by representing the state pdf by 3 parameters as 
compared to N particles. However, this new scheme also 
entails additional computations for parameterizing the pdf as 
well as reconstruction of pdf from the paremeters. In the 
results for this method presented in the next section, we 
perform threshold-based resampling locally and every 3 
iterations we resample globally according to the steps 
described above. With reference to the distributed the 
particle filter architecture of Figure 2, the global resampling 
step is performed in the central server after the individual 
CEs communicate the parametric estimates to the server. 
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6. EXPERIMENTS AND RESULTS 

 
Application: Battery Health Monitoring 

The application domain towards which this work is geared 
is battery health monitoring. Batteries form a core 
component of the power supply system for many machines, 
and their degradation often leads to reduced performance, 
operational impairment and even catastrophic failure. Thus, 
robust RUL estimation algorithms for batteries are an 
important research domain in prognostics. The battery aging 
data used in the experiments were collected from second 
generation 18650-size lithium-ion cells (i.e., Gen 2 cells) 
that were cycle-life tested at the Idaho National Laboratory 
under the Advanced Technology Development (ATD) 
Program. The battery model used in the particle filter based 
prognostic algorithm is shown in Figure 4.  

 

Figure 4 – Lumped Parameter Model of a Battery 

(revised from [17] Fig. 1). 

The parameters of interest are the double layer capacitance 
CDL, the charge transfer resistance RCT, the Warburg 
impedance RW and the electrolyte resistance RE, whose 
values change with various aging and fault processes. From 
the aging data collected, RE and RCT are found to change 
significantly in value, and hence, are considered to be the 
state variables of interest. Exponential growth models, as 
shown in equation 5, are fitted onto their aging curves to 
identify the relevant decay parameters C and λ: 

         θ = C·exp(λt)                 (5) 

where, θ  is the model predicted value of RE or RCT. The 
state and measurement equations that describe the battery 
model are given below: 

    z0 = C; Λ0 = Λ 
    zk = zk-1.expΛk + ωk 
    Λk = Λk-1 + νk 
    xk = [zk ; Λk] 
    yk = zk + υk          (6) 

where, the vector z comprises RE and RCT, and C and Λ 
contain their C and λ values, respectively. The z and Λ 
vectors are combined to form the state vector x. The 
measurement vector y comprises the battery parameters 
inferred from the test data. The noise samples ω, ν and υ are 
picked from zero mean Gaussian distributions whose 
standard deviations are derived from the training data. The 
particle filter uses the parameterized model described in 

equation (6) for the propagation of the particles (samples 
from the pdf of xk). For further details, the reader is referred 
to [17]. 
 
Experiment Details and Results 

The system architecture used is the same as outlined in 
Figure 2. The CE in our experiments is the Sun SPOT 
device. The resampling schemes along with their 
corresponding communication models were designed and 
simulated in MATLAB (version 8a). The times spent in 
message sending and receiving were measured using the 
SPOT device and the corresponding values were integrated 
into the simulation model. The software development for the 
Sun SPOTs was done using Netbeans IDE version 5.0. 
Besides the new scheme proposed in this paper, simulations 
for the baseline and threshold-based resampling schemes 
were also performed for comparison. Simulation and 
measurement of communication time were carried out for 2, 
3 and 4 SPOT devices. For the case of 2 SPOT devices, one 
of them acts as the central server while the other is a CE. In 
all the 3 cases, the central server also performs sampling and 
weight updating.  
 
Each state was a 2-dimensional vector. Also, parameter 
identification was done along with state estimation, hence 2-
dimensional parameter values were also part of the particle 
along with the state values. The number of particles used 
was 100. Prognostics is performed by first carrying out state 
tracking for a few iterations followed by computation of the 
RUL or time-to-failure (TTF).  
 

 

Figure 5 – Particle filter prediction pdfs for 3 

resampling schemes. 

Figure 5 shows the prediction pdfs for the 3 different 
resampling schemes for the case of distribution over 2 CEs. 
Two test cases for prediction were used; for the first case 
tracking was performed till week 32 while for the second 
case tracking was done till week 48 after which tracking and 
RUL estimation were carried out. The original dataset 
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contained aging data till week 72. From Figure 5 it may be 
observed that the RUL pdf improves in both accuracy 
(centering of the pdf over the actual failure point) and 
precision (spread of the pdf over time) for prediction at 48 
weeks compared to prediction at 32 week as more 
measurements are included before prediction. The actual 
EOL(End of Life) for the given data set was at 64.4563 
weeks. 
 
The comparison of communication performance for the 3 
resampling schemed for prediction at 32 weeks is shown in 
Figure 6 while the same for prediction at 48 weeks is shown 
in Figure 7. The communication time increases as the 
number of CEs is increases, since this causes an increase in 
the number of messages being sent. With more CEs, the 
number of particles being handled by a single CE decreases, 
however the total number of particles that needs to be 
distributed by the central server increases. Thus, for 2CEs, 
the central server needs to send only 50 particles to the other 
CE (each of them operate on 50 particles), but for 4CEs 75 
particle values need to be sent out to the remaining 3 CEs as 
each of them now handle 25 particles each.   
 

 

Figure 6 – Comparison of communication times for 

prediction at 32 weeks. 

 
 

 

Figure 7 – Comparison of communication times for 

prediction at 48 weeks. 

 
The results clearly show that parametric resampling out 

performs the remaining two resampling schemes by a wide 
margin. However, this improvement in communication also 
results in increase in computation as now additional 
computations parameterizing the pdf at each CE and 
recreation of pdf from parameters at the central server will 
have to be performed. The effects of this increase in 
computation as well as efficient algorithms to perform the 
computations are an important direction for future studies. 
Note that the communication times for prediction at 32 
weeks are slightly less compared to the corresponding 
results for prediction at 48 weeks. This is due to the fact that 
the prediction part of the algorithm does not involve 
resampling and hence does not encounter performance 
degradation due to serialization. Thus more tracking results 
in more communication and hence higher execution time. 
The choice of how long tracking should be done is clearly 
and important design trade-off issue as it significantly 
impacts the accuracy of the prediction.   

7. CONCLUSIONS 

A new resampling scheme for distributed implementation of 
particle filters has been discussed in this paper. Analysis and 
comparison of this new scheme with existing resampling 
schemes in the context for minimizing communication 
overhead have also been discussed. Our proposed new 
resampling scheme performs significantly better compared 
to other schemes by attempting to reduce both the 
communication message length as well as number total 
communication messages exchanged while not 
compromising prediction accuracy and precision.  

Future work will explore the effects of the new resampling 
scheme in the overall computational performance of the 
whole system as well as full implementation of the new 
schemes on the Sun SPOT devices. Exploring different 
network architectures for efficient communication is an 
importance future research direction as well. 
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